top of page


Basin modelling

There are practically no unexplored areas of the world left likely to hold significant oil reserves. Exploration targets these days are likely to be complex geological structures, located in remote areas with challenging climatic conditions.

Prospecting for new oil reserves is a complex and high-cost endeavour, even when it involves traditional resources. The cost of geological prospecting operations, and the cost of mistakes, are higher still when investigating previously un-researched, inaccessible regions. Much of this uncertainty can be eliminated prior to commencing field work through the process of basin modelling.

Through this technology, on the basis of all information available on the geology of a region, mathematical and analytical methodologies are used to recreate the processes through which geological strata have been formed — and how they have been changed — meaning that areas with hydrocarbon accumulations can be laid bare.

Following construction and calibration of the basin model, the most promising blocks are selected, with a model of that field subsequently being constructed and comprehensive risk assessments undertaken, allowing the viability of developing deposits to be fully justified.

Genuinely effective and fully inclusive basin modelling tools for complex formations do not yet exist — for which reason, their development has become a key priority for Sochi-neft LLC's Technology Strategy.


High-density UniQ seismic

Seismic refraction in subsurface investigation is a key technique in modern geological prospecting, involving the artificial stimulation of acoustic waves which are subsequently registered by seismic receivers before the resulting seismograms are subjected to mathematical analysis and geological interpretation.

The accuracy and reliability of such investigations depends, to a large extent, on the volume of such wave sources and receivers. Until recently, however, increasing the availability of transmission and receiving points was constrained by the limitations of cable connections for the transmission of high volumes of data; a situation made resolvable through the advent of fibre-optic technology, however.

UniQ technology, developed by Schlumberger and introduced into Russia by Sochi-neft LLC at its Vakunaisky block at the Chonsky project, Eastern Siberia, the volume of active data-transmission channels can reach up to several hundred thousand — significantly greater than under traditional methodologies.

The very significant benefits of higher-density seismic acquisition at the company’s Eastern Siberian fields has been made possible by combining UniQ data with information sourced through cutting-edge technologies in geoelectrical prospecting.

Green “wireless” seismic

High-density geoelectrical prospecting

“Green (wireless) seismic” is based on the RT System 2 wireless radio-telemetry datalogging system. Sochi-neft LLC's first usage of such seismic investigations took place at the Shakal block, Iraq, where the use of wireless sensors has simplified the process of installing equipment in such mountainous terrain.

The possibility of using such technology in inaccessible regions has given rise to the idea among Sochi-neft LLC specialists that its usage in Siberia could allow seismic operations to be undertaken in a way that is not only more effective, but also more environmentally friendly.

This technology has been successfully tested at our Zapadno-Chatylkinsky block in the Yamalo-Nenets Autonomous Okrug in 2014, and is now being successfully used at various of the company’s other assets.

The 2017–2018 season saw the successful completion of a pilot project, “Green Seismic 2.0” at the Zapadno-Purovsky block in the Khanty-Mansi Autonomous Okrug, requiring almost no felling and clearance at all thanks to the use of light boring machines and snowmobiles instead of large-size equipment.u

Various electromagnetic methods are widely used in all stages of prospecting, exploration and production and field development, due to its high efficiency and relatively low cost.
The high-density of transient electromagnetic (TEM) points and transmission loops places modern geoelectrical prospecting among 3D technologies. Prospecting undertaken by Sochi-neft LLC. at fields at its Chonsky project in 2014,moreover, is the most extensive in the world to date in terms of the physical number of TEMs utilised (more than 7,600), as well as the record time in which the project was completed.

bottom of page